
Intel® IXP1250 Network Processor
Specification Update

March 2004
Notice: The IXP1250 may contain design defects or errors known as errata. Characterized errata that
may cause the IXP1250’s behavior to deviate from published specifications are documented in this
specification update.

Part Number: 278377-006

ii Specification Update

Intel® IXP1250 Network Processor

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2004, Intel Corporation

Revision History

Revision Date Revision Description

03/16/01 001 Initial internal release.

06/22/01 002 First external release.

8/08/01 003
Added errata 13 - 19. Added Specification Changes 1 and 2 and Specification
Clarification 2.

12/14/01 004 Update for B0 Stepping.

11/25/03 005 Added Errata 21 and 22.

03/25/04 006 Added Errata 23.

Intel® IXP1250 Network Processor
Contents

Preface ...5

Summary Table of Changes...7

Identification Information..10

Errata..11

Specification Changes..21

Specification Clarifications..23

Documentation Changes ..25
Specification Update iii

Intel® IXP1250 Network Processor
iv Specification Update

Intel® IXP1250 Network Processor
Preface
Preface

This document is an update to the specifications contained in the Related Documents table below.
This document is a compilation of device and documentation errata, specification clarifications and
changes. It is intended for hardware system manufacturers and software developers of applications,
operating systems, or tools.

We have endeavored to include all documented errata in the consolidation process, however, we
make no representations or warranties concerning the completeness of this Specification Update.

Information types defined in Nomenclature are consolidated into the specification update and are
no longer published in other documents.

This document may also contain information that was not previously published.

Related Documents

Title Part Number

IXP1250 Network Processor Datasheet 278371

IXP1200 Network Processor Family Hardware Reference Manual 278303
Specification Update 5

Intel® IXP1250 Network Processor
Preface
Nomenclature

Errata are design defects or errors. These may cause the published (component, board, system)
behavior to deviate from published specifications. Hardware and software designed to be used with
any component, board, and system must consider all errata documented.

Specification Changes are modifications to the current published specifications. These changes
will be incorporated in any new release of the specification.

Specification Clarifications describe a specification in greater detail or further highlight a
specification’s impact to a complex design situation. These clarifications will be incorporated in
any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current published
specifications. These will be incorporated in any new release of the specification.

Note: Errata remain in the specification update throughout the product’s life cycle, or until a particular
stepping is no longer commercially available. Under these circumstances, errata removed from the
specification update are archived and available upon request. Specification changes, specification
clarifications and documentation changes are removed from the specification update when the
appropriate changes are made to the appropriate product specification or user documentation
(datasheets, manuals, etc.).
6 Specification Update

Intel® IXP1250 Network Processor
Summary Table of Changes
Summary Table of Changes

The following table indicates the errata, specification changes, specification clarifications, or
documentation changes which apply to the IXP1250 Network Processor product. Intel may fix
some of the errata in a future stepping of the component, and account for the other outstanding
issues through documentation or specification changes as noted. This table uses the following
notations:

Codes Used in Summary Table

Stepping

X: Errata exists in the stepping indicated. Specification Change or
Clarification that applies to this stepping.

(No mark) or (Blank box): This erratum is fixed in listed stepping or specification change does not
apply to listed stepping.

Page

(Page): Page location of item in this document.

Status

Doc: Document change or update will be implemented.

Fix: This erratum is intended to be fixed in a future step of the component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

Eval: Plans to fix this erratum are under evaluation.
Specification Update 7

Intel® IXP1250 Network Processor
Summary Table of Changes
Errata

No.
Steppings

Page Status ERRATA
A0 B0 – –

1 X X 11 NoFix SRAM Registers

2 X X 11 NoFix CSR Access Using PCI Memory Cycles

3 X X 11 NoFix PCI_DMA Instruction

4 X X 12 NoFix Clock Setup Time

5 X X 12 NoFix
Hold Time Issues for all PCI Signals (Both Bused
and Control)

6 X X 12 NoFix IX Bus Contention in Shared IX Bus Mode

7 X X 12 NoFix
Tval max Timing Issues When Running at 66 MHz
for all PCI Signals

8 X X 13 NoFix PCI CSR Corruption

9 X X 13 NoFix
SRAM[WRITE_UNLOCK,..., BURST_COUNT]
Instruction

10 X 15 Fixed
ECC Single Bit Errors (Correctable Errors) Status
Reporting Not Operational

11 X 16 Fixed PCI_OUT_INT_MASK Register Bits Not Readable

12 X X 16 NoFix Spurious PCI Parity Errors

13 X 16 Fixed SDRAM Arbiter

14 X 16 Fixed Problem with CRC

15 X 16 Fixed SDRAM_CRC

16 X 17 Fixed SA1200 Software Reset

17 X 17 NoFix Branch and Return

18 X 17 Fixed PCI Parity Error Signal

19 X 18 Fixed Find Bit

20 X X 18 NoFix SDRAM_CRC Residue Register Corrupted Data

21 X X 19 NoFix
Read-Lock CAM Operations from the StrongARM*
Core to SRAM

22 X X 19 NoFix Corrupted CRC Value

23 X X 19 NoFix 66 MHz Capable Bit

Specification Changes

No.
Steppings

Page SPECIFICATION CHANGES
A0 B0 – –

1 X X 21 SRAM Bus Signal Timing Parameters

2 X X 21 SDRAM Bus Signal Timing Parameters

3 X X 21 FCLK AC Parameter Measurements

4 X X 21 SRAM SCLK Signal AC Parameters

5 X X 22 SDRAM SDCLK AC Parameters
8 Specification Update

Intel® IXP1250 Network Processor
Summary Table of Changes
Specification Clarifications

No.
Steppings

Page SPECIFICATION CLARIFICATIONS
A0 B0 – –

1 X X 23 SRAM Unlocks and Write Unlocks

2 X X 23 Maximum Number of Chain_Ref Instructions

3 X X 23 DMA Receive in Big Endian Mode

Documentation Changes
No. Page DOCUMENTATION CHANGES

None for this release
Specification Update 9

Intel® IXP1250 Network Processor
Identification Information
Identification Information

Markings

Product Name Stepping QDF Number Marketing
Part Number Version

GCIXP1250AA1

1. Samples only.

A0 Q223 835589 200 MHz

GCIXP1250AB1 A0 Q224 835591 232 MHz

GCIXP1250BC1 B0 Q258 837415 232 MHz

GCIXP1250BA B0 NA 837411 166 MHz

GCIXP1250BB B0 NA 837412 200 MHz

GCIXP1250BC B0 NA 837414 232 MHz

GCIXP1250BAT1 B0 Q277 837416
166 MHz, Extended

Temperature

GCIXP1250BAT B0 NA 837417
166 MHz, Extended

Temperature

Figure 1. Package Marking

A8566-02

i GCIXP1250xx
FFFFFFFF
INTEL M C 2001

xxxxxxxSz
YWW PHILLIPPINES

BSMC
(ALT# & DATE CODE,
 COO)

FPO #
Intel Legal

Name

Pin 1
10 Specification Update

Intel® IXP1250 Network Processor
Errata
Errata

1. SRAM Registers
Problem: Reads of the SRAM_BOOT_CONFIG and SRAM_SLOWPORT_CONFIG registers return the

two inner bytes out of order.
SRAM_BOOT_CONFIG:
Written as: BRWA BCEA BRWD BCED
Read as: BRWA BRWD BCEA BCED

SRAM_SLOWPORT_CONFIG:
Written as: SRWA SCEA SRWD SCED
Read as: SRWA SRWD SCEA SCED

Implication: Bytes are read out of order.

Workaround: Software that reads these registers needs to put the bytes in the correct order.

Status: NoFix

2. CSR Access Using PCI Memory Cycles
Problem: The 128 byte window size is not supported. All other window sizes are valid. The

CSR_BASE_ADDR_MASK[18] may only be set to 1, preventing the 128 byte window size from
being selected. All other sizes are supported.

Implication: A 128 byte window size is not valid.

Workaround: Use a different PCI window size.

Status: NoFix

3. PCI_DMA Instruction
Problem: The Microengine PCI_DMA instruction SDRAM address operand is misaligned.

Implication: Incorrect addressing occurs if the address operand is not shifted.

Workaround: The SDRAM address operand of the PCI_DMA instruction requires a 1-bit right shift for proper
quadword addressing. For example, the address of a Descriptor Pointer located at SDRAM address
0x1000 should be right-shifted 1 bit with the resulting operand value being 0x0800, as follows:

; fix address of SDRAM Descriptor Pointer
immed[tmp1, 0x1000]
alu[DESC_ADDR,--,B,tmp1,>>1]
; issue DMA request
pci_dma[DESC_ADDR, 0, any_queue]

Status: NoFix
Specification Update 11

Intel® IXP1250 Network Processor
Errata
4. Clock Setup Time
Problem: Because the SRAM and SDRAM setup times are directly related to the loading of SCLK and

SDCLK, excessive setup times (Tsu) may be seen under heavy loading conditions. The maximum
value of Tsu for both memory interfaces is 7.5 ns.

Implication: Inability to meet the data setup time specification for memory devices.

Workaround: Buffer SCLK and SDCLK with a zero skew clock buffer such as a Cypress CY2309.

NoFix

5. Hold Time Issues for all PCI Signals (Both Bused and Control)
Problem: The PCI Local Bus Specification, Revision 2.2, specifies a minimum Hold Time of 0 ns in Section

7.6.4.2. The IXP1250 requires a minimum hold time of 1.0 ns (th - Input Signal Hold Time from
Clk).

Implication: System designers must constrain their design to tighter than worst-case PCI timing. One recom-
mendation is to limit the trace length of the PCI bus resulting in a reduction of Tprop.

Workaround: None.

Status: NoFix

6. IX Bus Contention in Shared IX Bus Mode
Problem: In shared IX Bus mode, using the TK_IN pin to configure the initial IX Bus Owner and Ready Bus

Master Mode could result in improper initialization. As a result, more than one IXP1250 may be
the initial IX Bus Owner and Ready Bus Master.

Implication: This erratum causes contention on the IX Bus and the Ready Bus. It is also possible that the devices
could initialize to the opposite state (not initial IX Bus Owner, Ready Bus Slave), in which case no
device controls the Ready Bus as master.

Workaround: Use software to configure the initial IX Bus Owner and Ready Bus Master Mode instead of using
the TK_IN strapping option. Pulldown the TK_IN inputs to all IXP1250s on a Shared IX Bus to
inhibit initial IX Bus Owner and Ready Bus Master Mode. This ensures that no IXP1250 will be
the initial IX Bus Owner and that all IXP1250s will be Ready Bus slaves. Boot software can then
initialize one IXP1250 to initial IX Bus Owner and Ready Bus Master Mode by writing
RDYBUS_TEMPLATE_CTL[8]=1. It is recommended to perform this operation as quickly as
possible after reset to minimize the length of time the IX Bus and Ready Bus float.

Status: NoFix

7. Tval max Timing Issues When Running at 66 MHz for all PCI Signals
Problem: The PCI Local Bus Specification, Revision 2.2 specifies a maximum Signal Valid Delay (Tval)

time of 6.0ns in Section 7.6.4.2. The IXP1250 guarantees a worst-case Tval maximum of 6.5 ns.

Implication: The Tval maximum value of 6.5 ns requires a reduction in maximum flight time (Tprop) when
running at 66 MHz.

Workaround: System designers must constrain their design to tighter than worst-case PCI timing. One recom-
mendation is to limit the trace length of the PCI bus resulting in a reduction of Tprop.

Status: NoFix
12 Specification Update

Intel® IXP1250 Network Processor
Errata
8. PCI CSR Corruption
Problem: The PCI CSRs will be corrupted by any write access to the PCI memory space, PCI IO space, or

PCI config space from the StrongARM* core to the PCI, if the previous transaction was a CSR
write to registers in the PCI unit.

The affected address ranges are:

• PCI memory space (6000 0000 - 7FFF FFFF)

• PCI I/O space (5400 0000 - 5400 FFFF)

• PCI config space 0 and 1 (5200 0000 - 53BF FFFF)

The problem is dependent on the sequence of StrongARM* core transactions described above, and
is not dependent on the time between these transactions.

Implication: Erratic behavior of PCI operations. The address of the register (PCI CSR) that gets corrupted
during the PCI memory access equals the lower address bits of the PCI memory transaction.

Workaround: Always follow a write operation from the StongARM core to any CSR within the PCI block by a
read to a register within the PCI.

Note: The read operation must immediately follow the write to the CSR.

The following is an example of a CSR read to the PCI_ADDR_EXTENSION 4200 0140h. Apart
from the device driver writing to PCI, VxWorks also writes to PCI timer registers. To get around
this:

1. Insert the following piece of code into the header file IXP1250eb.h located in the IXP1250
Developer’s Workbench software installation in the directory
Boardsupport\VxWorks\IXP1250EB.
#ifdef PCI_WORKAROUND
#define AMBA_TIMER_WRITE(reg, data) ({\
__asm__ __volatile (""); \
(*((volatile UINT32 *)(reg)) = (data)); \
((void)*(volatile UINT32 *)(IXP1250_PCI_ADDR_EXT)); \
__asm__ __volatile (""); })
#endif

2. Define the compiler directive PCI_WORKAROUND, either in your project build settings or
as a #define in the header file. Without this directive, the compiler may reorder the
instructions.

3. Rebuild the VxWorks image. Refer to the README file entitled Building the VxWorks BSP,
for directions on how to build the image.

Status: NoFix

9. SRAM[WRITE_UNLOCK,..., BURST_COUNT] Instruction
Problem: The SRAM[WRITE_UNLOCK,..., ref_cnt] optional_token(s) instruction does not work correctly

when ref_cnt > 1. Note that the command works correctly when the ref_cnt is equal to 1.

Implication: The SRAM[WRITE_UNLOCK,…,ref_cnt] command may not be completed by the SRAM unit
when the ref_cnt is greater than 1. Instead a different SRAM command may get executed twice.
This behavior is observed sporadically, when certain sequences of commands get queued to the
SRAM unit. Because the commands arrive at the SRAM unit from different Microengine threads, it
is impossible to determine if a software using this mode of command is prone to failure, or, when it
will fail. The exact symptoms observed by the user will depend on the system software design and
implementation.
Specification Update 13

Intel® IXP1250 Network Processor
Errata
For example, if the thread waits for the completion of the write_unlock command that gets dropped
(either using the ctx_swap optional token, or, the sig_done optional token and ctx_arb[SRAM]
command), then that thread will hang indefinitely. Further, the write to the memory location will
not complete leading to data corruption problems. And, because a different command gets executed
twice, two SRAM signals may be generated to a different thread, leading to improper program flow
and data corruption.

It is recommended that the software programs not use the SRAM[WRITE_UNLOCK,…,ref_cnt]
command with a ref_cnt > 1. If more than one long word needs to be written to memory, the
software should use the workarounds described below.

Workaround: Two workarounds have been developed and are described below:

1. Break the SRAM[WRITE_UNLOCK,..., ref_cnt] instruction into a SRAM[write, …, ref_cnt]
and SRAM[WRITE_UNLOCK,..., 1] pair.

Workaround 1 requires two Microengine Instruction Control Store locations, but results in one
extra SRAM bus write cycle. It is possible to eliminate the extra bus cycle by suitably modifying
the transfer register, address, and, ref_cnt fields, but may result extra Microengine instructions
needed to compute the address. A simple case is illustrated in the examples below for this.

2. Break the SRAM[WRITE_UNLOCK,....], instruction into a SRAM[write, …, ref_cnt] and
SRAM[UNLOCK,..., 1] pair.

Workaround 2 does not have the extra bus access but may require a third ctx_arb[SRAM]
instruction if the program needs to wait for completion of the command. Examples shown below
will illustrate this point.

Note: Great care must be taken to ensure that different optional tokens are carried over to the workaround
to ensure correct program flow. The examples below are given to illustrate some key
considerations.

Example A – No optional tokens.

Original code
SRAM[WRITE_UNLOCK, $x1, sAddr, 0, 3]

Workaround 1
SRAM[WRITE, $x2, sAddr, 1, 2]
SRAM[WRITE_UNLOCK, $x1, sAddr, 0, 1]

Workaround 2
SRAM[WRITE, $x1, sAddr, 0, 3]
SRAM[UNLOCK, --, sAddr, 0, 1]

Example B – CTX_SWAP optional token.

Original code
SRAM[WRITE_UNLOCK, $x1, sAddr, 0, 3], ctx_swap

Workaround 1
SRAM[WRITE, $x2, sAddr,1, 2]
SRAM[WRITE_UNLOCK, $x1, sAddr, 0, 1],ctx_swap

Workaround 2
SRAM[WRITE, $x1, sAddr, 0, 3], sig_done
SRAM[UNLOCK, --, sAddr, 0, 1]
14 Specification Update

Intel® IXP1250 Network Processor
Errata
CTX_ARB[SRAM]

Example C - When the priority queue is used, both requests must use the
same queue.

Original code
SRAM[WRITE_UNLOCK, $x1, sAddr, 0, 3], priority, ctx_swap

Workaround 1
SRAM[WRITE, $x2, sAddr, 1, 2], priority
SRAM[WRITE_UNLOCK, $x1, sAddr, 0, 1], priority, ctx_swap

Workaround 2
SRAM[WRITE, $x1, sAddr, 0, 3], priority, sig_done
SRAM[UNLOCK, --, sAddr, 0, 1], priority
CTX_ARB[SRAM]

Example D – correctly handling the defer optional token.

Original code
alu[$x1, --, b, r1]
alu[$x2, --, b, r2]
SRAM[WRITE_UNLOCK, $x1, sAddr, 0, 3], ctx_swap, defer[1]
alu[$x3, --, b, r3]

Workaround 1
alu[$x1, --, b, r1]
alu[$x2, --, b, r2]
alu[$x3, --, b, r3]
SRAM[WRITE, $x2, sAddr, 1, 2]
SRAM[WRITE_UNLOCK, $x1, sAddr, 0, 1], ctx_swap

Workaround 2
alu[$x1, --, b, r1]
alu[$x2, --, b, r2]
alu[$x3, --, b, r3]
SRAM[WRITE, $x1, sAddr, 0, 3], sig_done
SRAM[UNLOCK, --, sAddr, 0, 1]
Ctx_arb[SRAM]

Status: NoFix

10. ECC Single Bit Errors (Correctable Errors) Status Reporting Not Operational
Problem: Bits 16, 17, 18 and 24 (SA_ECC_ERR, PCI_ECC_ERR, UENG_ECC_ERR, ECC_INTR) in the

SDRAM_CSR register are not functional. They will always read back as "0".

Implication: The device cannot detect what block initiated the SDRAM read that resulted in an ECC error.

Note: The error will be corrected if EN_ECC_GEN is enabled (bit 3).

Workaround: None.

Status: Fixed
Specification Update 15

Intel® IXP1250 Network Processor
Errata
11. PCI_OUT_INT_MASK Register Bits Not Readable
Problem: PCI Out Interrupt Mask register at 34h. The register is write only and cannot be read back.

Implication: The mask is operational, but the only way to test it is by generating I20 and doorbell interrupts to
PCI, writing 1 to this register, and then checking if subsequent interrupts to PCI are masked.

Workaround: None.

Status: Fixed

12. Spurious PCI Parity Errors
Problem: After initialization, the IXP1250 may indicate spurious PCI parity errors until at least 32 longwords

have been transferred to the PCI bus using a target read mechanism.

Implication: PCI parity errors may occur in the first 32 longwords during a target read.

Workaround: The PCI bus initialization logic should include a 32 longword (or more) target read operation to
each IXP1250. During this interval, ignore PCI parity errors.

Status: NoFix

13. SDRAM Arbiter
Problem: Commands are dropped in the SDRAM controller when using sdram[], optimize_mem

Chip would “hang” due to a lockout condition in the SDRAM arbiter A specific sequence of
DRAM commands to different queues would eventually cause the arbiter to NOT grant any
command that isn’t intended for the high priority queue.

Implication: Using the optimize_mem token on SDRAM references may freeze microengines

Workaround: Do not use opt_mem queue with SDRAM references

Status: Fixed

14. Problem with CRC
Problem: Problem with CRC when data not is not 64-bit aligned.

CRC calculation over unaligned data from DRAM to TFIFO was not calculated correctly. Data was
also not making it to the TFIFO correctly. The problems occurred with and without CRC masking,
and on all burst sizes.

Implication: Requires additional instructions to align data, thus preventing ATM OC12 speed.

Workaround: None

Status: Fixed

15. SDRAM_CRC
Problem: SDRAM_CRC instruction hangs the IXP1250.

The IXP1250 appears to hang while doing sdram[read], read_crc. The problem here is that during
an SDRAM chain, a non-DRAM instruction would interleave itself on the command bus right
before the last SDRAM reference in the chain. This caused the chain reference to stop and the last
sdram reference (which had a ctx_swap token) would not go into the ordered queue. So the chain is
sitting there waiting for the last reference, which will never arrive, and the ctx_swap would never
return because its instruction will never get out of the queue.

Implication: Can’t use CRC.
16 Specification Update

Intel® IXP1250 Network Processor
Errata
Workaround: None

Status: Fixed

16. SA1200 Software Reset
Problem: PCI-SA1200 Reset register does not function as specified.

Three mechanisms are used to reset the IXP1200:

• Two hardware inputs (PCI_RST# and RESET_IN#)

• One software reset (SW) via the IXP1200_RESET register.

Problems have been observed in attempting to reset the IXP1250 via the PCI_RST# input or the
IXP1200_RESET register (SW reset).

In summary:

1. RESET_IN#: No reported problems with the IXP1250 hardware reset.

2. PCI_RST#: Does not work per the specification. It does not reset the device correctly and
results in a hang condition during the boot sequence.

3. IXP1200_RESET register: Unpredictable results. Specifically customers initiating a soft reset
by writing a value of 0xFFFFFFFF to this register results in the IXP1250 hanging during the
boot sequence.

Implication: Hangs the system, typically after running for a period of time.

Workaround: None

Status: Fixed

17. Branch and Return
Problem: Certain sequence of instructions will cause dropping of an instruction following the return

instruction.

A RTN or JUMP may not follow a branch whose branch decision is made at the P3 pipeline stage.
These branches include all Class 3 branch instructions and branches where the decision has been
postponed to the P3 stage. Please see Section 4.5.1 (Class 3 Instructions) and Section 4.5.4
(Postponed Branch Decision) of the IXP1200 Network Processor Family Hardware Reference
Manual for more information.

Implication: A program execution failure will occur.

Workaround: A RTN or JUMP may not follow a P3 stage branch; program accordingly.

Status: NoFix

18. PCI Parity Error Signal
Problem: Parity Error Signal not asserting.

The Parity bit in the PCI interface is not set correctly. The Parity error indication bit in the
PCI_STATUS register is correct.

Implication: Bad parity.

Workaround: Use the register parity error indication in the PCI_STATUS register.

Status: Fixed
Specification Update 17

Intel® IXP1250 Network Processor
Errata
19. Find Bit
Problem: Find Bit works on the software model but not in the actual hardware. The operation returns zero

when a non-zero result is expected.

; Demonstration of find_bset_with_mask erratum
;
; The data register is loaded with all 1’s
; Then we do a find_bset_with_mask with a mask of 0x10,
; which should find bit 4 as the first bit set.
; On hardware, the result comes back as zero indicating no bit set.

immed[data, -1]
find_bset_with_mask[0x10, data], clr_results
nop
nop
nop
nop
nop
nop
load_bset_result1[result] ; should result in 0x104
nop
nop
nop
lab#: br [lab#]

Implication: Wrong Find Bit.

Workaround: Do not use the FIND_BSET_WITH_MASK instruction with an immediate mask operand.

Status: Fixed

20. SDRAM_CRC Residue Register Corrupted Data
Problem: An sdram_crc[write, ..], initiate command, under certain conditions, may result in corrupted data

in the Residue register.

Implication: During an alignment operation of >=4 bytes, an additional cycle is required for the operation to
complete when compared to an alignment of < 4 bytes. If an sdram_crc[write, ..], initiate
command is issued immediately after an alignment operation of >= 4 bytes, the additional cycle
blocks the CRC Residue register write resulting in a corrupted residue value.

Workaround: Two software workarounds exist for software designs doing both sdram[tfifo_wr,]byte-align>=4
and CRC calculations sequences. The workarounds insert one cycle between the last
sdram[tfifo_wr,]byte-align>=4 and the sdram_crc[write],initiate that immediately follows.

Workaround 1: This workaround is recommended due to the ease of implementation. An extra
cycle between all read and write operations is effected by programming the Read-Write
Turnaround time(tRWT) value in the SDRAM CSR register to at least 0x2. The tRWT value of 0x2
places two unused cycles on the SDRAM pins between every read and write, as opposed to the
required one.

The simulator will detect if this problem could occur in the simulating program and will print a
warning if Workaround 1 is not used.

Workaround 2: The workaround is to always insert a regular SDRAM read without any byte
alignment immediately before the CRC initiation. An example of this workaround is to chain an
sdram[read] to every sdram[tfifo_wr],byte-align>=4 and to place these requests in any queue
18 Specification Update

Intel® IXP1250 Network Processor
Errata
except the ordered queue. This queue allocation is not a requirement, only a recommendation for
possible performance implications. No additional cycles are inserted in this workaround if the
instruction sequences are valid program design goals.

Status: NoFix

21. Read-Lock CAM Operations from the StrongARM* Core to SRAM
Problem: StrongARM* core instructions that use the SRAM CAM address range (0x1200 0000 - 0x127F

FFFF) to perform a read-locked access can not rely on the lock attempt succeeding.

Implication: StrongARM* applications that share data structures with the Microengines cannot rely on the
SRAM CAM to provide atomic access to those data structures. When a StrongARM* application
issues a read_lock operation, the operation may be placed in the read_lock fail queue by the SRAM
controller. The application determines whether or not the operation was placed in the read_lock fail
queue by checking the value of the RLS bit of the SRAM_CSR register. To determine when a
failed read_lock request is eventually moved from the read_lock rail queue to the CAM, the
application polls the SRAM_CSR register until the RLRS bit is set to 1. The SRAM controller is
incorrectly failing to set the RLRS bit when read_lock operation is moved from the read_lock fail
queue to the SRAM CAM. Therefore, a StrongARM* application is not notified when a read_lock
request is ultimately granted. This will cause locks to be placed in the CAM without application
awareness.

Workaround: None. If a mutual exclusion mechanism is required, the following approaches may be used in place
of the SRAM CAM:

1. Use the SRAM Bit Test & Set and Bit Test & Clear atomic operations (refer to Errata 32).

2. Create a Microengine service thread that will access the SRAM CAM on behalf of the
StrongARM* application. For information on building a service thread that is callable from the
StrongARM* core refer to the description of the SHRIMP API and Dispatch Library in the
IXP1200 Network Processor Family Microcode Software Reference Manual.

Status: NoFix

22. Corrupted CRC Value
Problem: An SDRAM_CRC[tfifo_wr. ...] command with a byte align >= 4 results in a corrupted CRC value

when the SDRAM address crosses the burst length boundary.

Implication: For byte alignment operations >= 4, the CRC value is corrupted when the SDRAM address crosses
the burst length boundary as set in SDRAM_MEMCTL0<15:12>.

Workaround: Break up the transfer at the SDRAM burst length boundary. Use two SDRAM_CR[read] instruc-
tions with masking to read the data at the boundary. The remainder of the data is transferred with an
SDRAM_CRC[tfifo_wr. ...]. The missed QWORD after the boundary is then aligned and copied to
the TFIFO using the TFIFO[write] command.

Example A

Original code:

// Format indirect_ref for ref_cnt, tfifo_addr, and byte_align
alu[ind, refCnt,-,1]
alu[ind, --, B, ind, <<16]
alu[ind, ind, OR, 1, <<20]
alu[ind, ind, OR, byte_align, <<12]
alu[ind, ind, OR, tfifo_addr, <<4]
sdram_crc[t_fifo_wr, --, dramBufferAddr, dramBufferOffset, 1], indirect_ref, chained_ref
Specification Update 19

Intel® IXP1250 Network Processor
Errata
Updated code:

In the following code, dram_crc_tfifo_wr, crc_dram, and merge_data are macros that
must be written by the user.

// Start formatting of indirect_ref with tfifo_addr
alu[ind,--, B, fifoAddr, <<4]

// First check if dram address will cross burst
// boundary. In this example, burst length = 8
alu[boundryAddr, dramBufferAddr, +, dramBufferOffset]
alu[temp, boundryAddr, AND, 0x07]
alu[temp, temp, B-A, 7]
.if(refCnt <= temp)

// Do not need to perform workaround
dram_crc_tfifo_wr(dramBufferAddr, dramBufferOffset, refCnt, ind)

.else
// Need to perform workaround
//
.if (temp > 0)

dram_crc_tfifo_wr(dramBufferAddr, dramBufferOffset, temp, ind)
alu[ind, ind, +, temp, <<4]

.endif

// Read data at dram boundary and calculate CRC on masked data
alu[boundryAddr, boundryAddr, +, temp]
.local byteOffsetCmpl
alu[byteOffsetCmpl, byteOffset, B-A, 8]
crc_dram(read, $$xferA, boundryAddr, 0, 0, byteOffset, mask_right)
crc_dram(read, $$xferB, boundryAddr, 1, 0, byteOffsetCmpl, mask_left)

// Calculate TFIFO address for the missed element
alu[missedFifoAddr, --, B, ind, <<20] // Clear out other ind options
alu[missedFifoAddr, --, B, missedFifoElem, >>24]
alu[temp, temp, +, 1]

// Adjust TFIFO address and perform normal dram_crc_tfifo_wr on remainder of data
alu[temp, refCnt, -, temp]
.if (temp > 0)

alu[ind, ind, +, 1, <<4]
dram_crc_tfifo_wr(boundryAddr, 1, temp, ind)

.endif

// Finally merge data from dram boundary and write to TFIFO at missed address
merge_data($$xferA0, $$xferA1, $$xferB0, $$xferB1, byteOffset)
t_fifo_wr[$xferA0, missedfifoAddr, 0, 1], ctx_swap

.endif

Status: NoFix

23. 66 MHz Capable Bit
Problem: The IXP1250 is 66 MHz capable, but the 66 MHz Capable Bit (bit 21) in the PCI_CMD_STAT

register is incorrectly fixed to zero indicating that it is not capable of 66 MHz operation.

Implication: When this bit is read, the IXP1250 incorrectly indicates that it is not capable of operating at 66
MHz as defined in the PCI Local Bus Specification, Revision 2.2.

Workaround: Do not use this bit for determining the maximum operating frequency of the IXP1250’s PCI bus.

Status: NoFix.
20 Specification Update

Intel® IXP1250 Network Processor
Specification Changes
Specification Changes

1. SRAM Bus Signal Timing Parameters

The maximum clock to data output valid delay (Tval) value for 232 MHz operation was originally
specified as 4.0 ns. The new Tval value is 3.35 ns.

The maximum clock to control outputs valid delay (Tctl) value for 232 MHz operation was
originally specified as 4.0 ns. The new Tctl value is 3.05 ns.

The minimum data input setup time before SCLK for pipelined SRAMs (Tsup) value for 232 MHz
operation was originally specified as 3.75 ns. The new Tsup value is 3.10 ns.

2. SDRAM Bus Signal Timing Parameters

The maximum clock to data output valid delay (Tval) value for 232 MHz operation was originally
specified as 3.4 ns. The new Tval value is 3.3 ns.

The maximum SDCLK to control output valid delay (Tctl) value for 232 MHz operation was
originally specified as 3.4 ns. The new Tctl value is 2.90 ns.

Tsup, the minimum data input setup time before SDCLK value for 200 MHz operation was
originally specified as 3.75 ns. The new Tsup value is 3.70 ns.

Tsup, the minimum data input setup time before SDCLK for 232 MHz operation was originally
specified as 3.75 ns. The new Tsup value is 3.70 ns.

3. FCLK AC Parameter Measurements

The parameter values for Thigh, Tlow, and the Tr and Tf units have changed as follows:

The minimum Clock high time (Thigh) was originally specified as 4.5 ns. The new Thighvalue is 3.8
ns.

The minimum Clock low time (Tlow) was originally specified as 4.5 ns. The new Thighvalue is 3.8
ns.

Both Thigh and Tlow have been further clarified by the statement “Thigh and Tlow are based on a
50% duty cycle and can vary worst case 45-55%”.

The units used for Clock rise (Tr) and Clock fall (Tf) time was originally specified as V/ns. The
new unit is ns.

4. SRAM SCLK Signal AC Parameters

The minimum Cycle Time (Tcyc) for 232 MHz operation was originally specified as 8.6 ns. The
new Tcyc value is 8.62 ns.

The minimum Cycle High Time (Thigh) for 232 MHz operation was originally specified as 4.6 ns.
The new Thigh value is 4.02 ns.

The minimum Cycle Low Time (Tlow) for 232 MHz operation was originally specified as 4.6 ns.
The new Tlow value 4.02 ns.
Specification Update 21

Intel® IXP1250 Network Processor
Specification Changes
5. SDRAM SDCLK AC Parameters

The minimum Cycle Time (Tcyc) for 232 MHz operation was originally specified as 8.6 ns. The
new Tcyc value is 8.62 ns.

The minimum Cycle High Time (Thigh) for 232 MHz operation was originally specified as 4.6 ns.
The new Thigh value is 4.02 ns.

The minimum Cycle Low Time (Tlow) for 232 MHz operation was originally specified as 4.6 ns.
The new Tlow value 4.02 ns.
22 Specification Update

Intel® IXP1250 Network Processor
Specification Clarifications
Specification Clarifications

1. SRAM Unlocks and Write Unlocks
Issue: Documentation had indicated that performing an SRAM write_unlock on a memory location that

was not locked would only result in an SRAM write, and that an SRAM unlock on a memory
address that was not locked would result in no action. In actuality, unlocking an SRAM address
that is not locked will result in corruption of internal CAM pointer leading to unpredictable results.

The internal CAM pointer is implemented as a 4-bit counter which indicates the number of
outstanding locks that are present in the CAM. The unlock/write_unlock of an address that is not
present in the CAM will incorrectly decrement this counter. This could result in corruption of CAM
contents and failure of read_locks which should have been successful. Depending on the frequency
of incorrect unlocks write_unlocks, and the overall program flow, this could result in data
corruption, or eventual hang of one or more threads.

2. Maximum Number of Chain_Ref Instructions
Issue: Documentation has not adequately described that for SDRAM and SDRAM_CRC instructions, the

maximum number of instructions that may be chained together using the chain_ref optional token
is five. Chaining more than five instructions runs the risk of overflowing the SDRAM queues,
resulting in dropped references.

3. DMA Receive in Big Endian Mode
Issue: The documentation does not clearly describe the PCI receive operation when Big Endian Data In is

set. The fact that byte swapping occurs before the data is aligned was not clearly articulated. The
clarification in Figure 2 will eliminate all ambiguities.
Specification Update 23

Intel® IXP1250 Network Processor
Specification Clarifications
Figure 2. Results for DMA Receive in Big Endian Mode - Unaligned Transfer
24 Specification Update

Intel® IXP1250 Network Processor
Documentation Changes
Documentation Changes

None for this version of the specification update.
Specification Update 25

Intel® IXP1250 Network Processor
Documentation Changes
26 Specification Update

	Intel® IXP1250 Network Processor
	Preface
	Related Documents
	Nomenclature

	Summary Table of Changes
	Codes Used in Summary Table
	Stepping
	Page
	Status

	Errata
	Specification Changes
	Specification Clarifications
	Documentation Changes

	Identification Information
	Markings

	Errata
	Specification Changes
	Specification Clarifications
	Documentation Changes

		2008-12-13T17:11:55-0800
	ch

